
ArmDroid – an Android app for teleoperating the
KUKA youBot mobile manipulation platform

Matteo Morelli

May 25, 2012

Contents
1 Introduction 2

1.1 What ArmDroid is and how it works 2
1.2 Hardware/Software pre-requirements 2
1.3 License, right-of-use and citation 3

2 Getting started with ArmDroid 3
2.1 Overview of the application life-cycle 4
2.2 Application settings and preferences 4
2.3 Robot arm teleoperation . 5
2.4 Mobile base driving . 5

3 ArmDroid internals 7
3.1 Activities . 7
3.2 Application . 8
3.3 Periodic actuation jobs . 9
3.4 Database . 10

4 Conclusions 12

1

1 Introduction
This section introduces ArmDroid, an Android application (app) developed as
final project for the course “Android Framework” taught at the TeCIP Institute,
Scuola Superiore Sant’Anna (Pisa, Italy), from 11/11 to 12/02, and valid for
3 ECTS-credits1. ArmDroid falls in the category 2 of the proposed projects:
“Sensor Network and Controller” [3].

1.1 What ArmDroid is and how it works
ArmDroid allows to teleoperate the KUKA youBot mobile manipulation plat-
form [1] via an Android-powered device, such as a tablet or a smartphone.

As detailed in [5], the KUKA youBot consists of two main parts: the omni-
directional mobile platform, whose motions are described by red arrows in
figure 1(a), which consists of the robot chassis, 4 mecanum wheels, motors, power
and an onboard PC; and the robot arm, which has 5 degrees of freedom (DOFs),
whose motions around their axes are shown as blue arrows in figure 1(a), and
can be controlled by the onboard PC if connected to the mobile platform.

Figure 1(b) depicts the way the teleoperation is performed by the user. The
ArmDroid application provides a (simplified) “Teach-Pendant2”-like activity with
edit texts and push buttons to pilot the robot arm and to save joint configurations
in a local database; it also provides a “Wii-mote”-like activity that relies on
sensors (accelerometer and magnetic field) to drive the mobile platform. Motion
commands are periodically acquired by a (non-hard-real-time) task, and get
transmitted via UDP to a server node written in Python language. The server
node is distributed as a package in the ROS framework [4], and runs on a remote
PC; it may operate the actual system (if the remote PC is the youBot’s onboard
PC), or simulate the robot in the Gazebo simulator [2].

ArmDroid must not be intended as a feature-rich application for robot
teleoperation. Instead, it is designed to be a simple application that does
work. In this context, simple means that simplification assumptions have been
made about the application logic according to the objectives of the project,
that, in the end, is about a course on the Android framework, not robotics or
control. On the other hand, the application should also do something interesting
(entertaining?). In this sense, the time that a full-fledged user interface and
the application of sophisticated techniques of software engineering would have
required to be, respectively, developed and applied, has been “sacrificed” in favor
of the implementation of concrete (even if basic) teleoperation functionalities.

1.2 Hardware/Software pre-requirements
ArmDroid has been developed in Eclipse, version 3.7.1, with Android Develop-
ment Toolkit version 16.0.1.v201112150204-238534.

The application has been tested on an actual hardware device, a Samsung
Galaxy S GT-I9000 with firmware version 2.3.5 (GINGERBREAD.NEJVK).
The “Teach-Pendant”-like activity, which does not rely on sensors, has been also
tested on an AVD whose system image target is Platform 2.3.3 - API Level 10.

The mobile manipulation platform has been operated through ROS Electric.
1http://en.wikipedia.org/wiki/European_Credit_Transfer_and_Accumulation_System
2http://en.wikipedia.org/wiki/File:Teach_pendant.JPG

2

(a) (b)

Figure 1: (a): Overview of the motions of the KUKA youBot omni-directional
base (red arrows), and of the its arm (blue arrows). (b): Birds-eye view of the
ArmDroid design; ArmDroid periodically sends motion data to a remote server
node, which may either operate the real youBot (1) or simulate it in Gazebo (2).

1.3 License, right-of-use and citation
ArmDroid is copyright c© by Matteo Morelli, 2012; it is free-software, released
under the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License3, or any later version.

To cite ArmDroid, the following BibTeX entry must be used:

@Techreport{morelli12:armdroid,
title = "Arm{D}roid -- an {A}ndroid app for

teleoperating the {KUKA} you{B}ot mobile
manipulation platform",

author = "Matteo Morelli",
institution = "ReTiS Lab., Scuola Superiore di Studi

Universitari e di Perfezionamento Sant’Anna",
year = "2012"

}

2 Getting started with ArmDroid
This section describes how to get started with ArmDroid. First, the application
life-cycle is described, then the available settings and preferences are listed. The
section ends by giving an example of how a teleoperation task can be performed,
for both the arm and the mobile base of he KUKA youBot.

3http://www.gnu.org/licenses/gpl-3.0.txt

3

(a) (b)

Figure 2: (a): ArmDroid application life-cycle. (b): ArmDroid options menu.

2.1 Overview of the application life-cycle
ArmDroid is started by (locating and) touching the ArmDroid launcher icon.
This action starts the TeachPendantActivity, i.e., the activity that implements
the “Teach-Pendant”-like mode of the application. From this activity, after
having pressed the MENU_KEY on the device, the user may either launch the
MobilePlatformDriveActivity, i.e., the activity that realizes the “Wii-mote”-
like mode of the application, or access the preferences, to change the application
settings.

In order to return back to the TeachPendantActivity, the user must use
the BACK_KEY on the device, since the MENU_KEY does not work when the pref-
erece screen is displayed, and it only allows to access the preferences when
the MobilePlatformDriveActivity is running. The action of pressing the
BACK_KEY when the TeachPendantActivity is running will exit the application.

Figures 2(a) and 2(b) represent the entire life-cycle of the application and
the ArmDroid options menu, respectively.

2.2 Application settings and preferences
ArmDroid needs to connect to a remote server node that, physically or virtually,
operates the KUKA youBot. For that, ArmDroid needs to know the URL and
the listen port of the server node it is connecting to. These data are specified
by the user by accessing the entries Gazebo address and Gazebo port in the
preference menu, respectively.

The TeachPendantActivity requires that the user provides joint angles to
move the robot arm. These values can be expressed in different units of measure,
e.g., degrees or radians, according to the user’s preferences. For that, ArmDroid
provides the ListPreference Angle units in the preference menu.

Finally, the user may want to lock the app screen to the current orientation.
This is done by ticking the checkbox named Lock orientation in the preference
menu. Note that this option only affects the TeachPendantActivity, since the

4

Figure 3: The ArmDroid preference menu in landscape mode.

screen orientation of the MobilePlatformDriveActivity is always locked to
landscape mode by itself.

Figure 3 shows the preference menu in landscape mode.

2.3 Robot arm teleoperation
There are three different ways to specify a joint set configuration to be sent
to the remote server node that operates the robot. These are implemented
by three different regions within the user interface of TeachPendantActivity.
With reference to figure 4, these regions are enclosed by green, orange and yellow
lines. Note that, only values within the range [−180,+180] degrees (or [−π,+π]
radians) can be assigned to joint axes; values that fall outside this range are set
equal to the maximum and minimum of the range.

The green-line region encloses a set of push buttons that atomically increment
(plus) or decrement (minus) the joint value of the corresponding axis. Joint
values are incremented/decremented by a fixed amount: 5 degrees, when the
Angle units preference is set to degrees, and 0.1 radians, otherwise.

The orange-line region contains a set of edit texts, each of them allowing the
user to directly specify a value for the corresponding joint axis.

Finally, the yellow-line region frames a set of push buttons that allows the
user to manage a local database. Previously saved joint set configurations can
be loaded at any time during the life-time of the activity, or deleted when are
no longer considered of interest.

2.4 Mobile base driving
The “Wii-mote”-like mode, realized by the MobilePlatformDriveActivity,
assumes that the user uses its Android-powered device as a game controller. The
screen orientation, locked to landscape, as in figure 5(a), enforces the idea that
the user has to hold the device like a small steering wheel, which can be rotated
around three different axes: roll, pitch and yaw4. Longitudinal, transversal and
rotational (angular) motions of the mobile robot base are automatically inferred

4http://en.wikipedia.org/wiki/Aircraft_principal_axes

5

Figure 4: User interface of TeachPendantActivity with green-, orange- and
yellow-line regions.

(a) (b)

Figure 5: (a): User interface of the MobilePlatformDriveActivity in IDLE
functioning mode. (b): Map of changes in the device’s orientation into robot’s
movements.

by ArmDroid, on the basis of the sensory information provided by the device
when the user rotates it around that axes. Figure 5(b) illustrates how changes
in the device’s orientation are mapped into robot’s movements.

The MobilePlatformDriveActivity has two functioning modes: IDLE and
DRIVING. When in its initial functioning mode, the IDLE mode, the activity does
not send any motion data to the remote server node, and it only displays the
device’s orientation on the screen. When the calibrate button is pressed, the
activity saves the current device’s orientation (instantly) and sets it as the initial
(zero) orientation, still remaining in IDLE mode but now allowing the start
driving button to be pressed. Each change of the device’s orientation is now
computed with respect to this “zero configuration”.

When the user presses the start driving button, the activity switches
to the DRIVING mode. Sensory data from accelerometer and magnetometer
are periodically sampled and filtered, in order to transform them to “velocity

6

levels” for longitudinal, transversal and angular motions. Velocity levels are pure
integer values ranging from +2 to −2, where 2 indicates “fast”, 1 stands for
“normal” and 0 is for “no” motion. The sign indicates the way of motion, i.e.,
forward/backward for longitudinal, left/right for transversal, left/right on spot
for rotational motions. Of course, motions can be combined in order to enable
the KUKA youBot to move along an arc (left/right arc) as well.

The user can stop the driving procedure and return back to the IDLE mode,
by pressing the stop driving button at any time.

3 ArmDroid internals
After having introduced ArmDroid (section 1) and described how to get started
with it (section 2), this section takes a look at its internal implementation and
design choices.

3.1 Activities
The TeachPendantActivity provides the user with edit texts and push buttons
to specify the robot arm joint configuration to be sent to the remote server node.
Each edit text allows the user to directly specify a value for the corresponding
joint axis. For this purpose, edit texts register setOnFocusChangeListeners and
implement the abstract public method onFocusChange, called when the focus
state of the view changes. “Plus” (“minus”) push buttons, that atomically incre-
ment (decrement) the joint values, all call the same callback when clicked, namely
teachPendantButtonPlusAxis (teachPendantButtonMinusAxis). There, the
joint value to be modified is selected on the basis of the button ID. Callbacks
are assigned to push buttons in the XML layout, using the android:onClick
attribute.

The MobilePlatformDriveActivity relies on the sensory information from
accelerometer and magnetometer to compute the device’s orientation. For this
purpose, the activity uses an instance of SensorManager, that gives access to
the device’s sensors, and implements SensorEventListener.�
/* MobilePlatformDriveActivity */
...

protected void onResume () {
super . onResume ();
mSensorManager . registerListener (

this ,
mSensorManager . getDefaultSensor (Sensor . TYPE_ACCELEROMETER),

SensorManager . SENSOR_DELAY_GAME);
mSensorManager . registerListener (

this ,
mSensorManager . getDefaultSensor (Sensor . TYPE_MAGNETIC_FIELD),

SensorManager . SENSOR_DELAY_GAME);
}

protected void onPause () {
super . onPause ();
mSensorManager . unregisterListener (this);

}

public void onSensorChanged (SensorEvent evt) {

...

if (type == Sensor . TYPE_MAGNETIC_FIELD) {

7

geomag [0]= evt. values [0];
geomag [1]= evt. values [1];
geomag [2]= evt. values [2];

} else if (type == Sensor . TYPE_ACCELEROMETER) {
gravity [0]= evt. values [0];
gravity [1]= evt. values [1];
gravity [2]= evt. values [2];

}

if ((type == Sensor . TYPE_MAGNETIC_FIELD) ||
(type == Sensor . TYPE_ACCELEROMETER)) {

SensorManager . getRotationMatrix (rotationMatrix , null , gravity , geomag
);

// compute the sought device ’s orientation
SensorManager . getOrientation (rotationMatrix , rpy);
...

}

...

}� �
Event listeners for both the sensors are registered in onResume, and are unreg-

istered in onPause in order to avoid wasting battery power when the activity does
not run. The core functionality provided by the MobilePlatformDriveActivity
is coded in onSensorChanged, where the getRotationMatrix method is used,
which takes the values from the accelerometer and magnetometer and returns
a matrix that is finally processed by getOrientation to determine the sought
device’s orientation.

3.2 Application
ArmDroid’s activities need to share settings and data structures during their life-
time. In order to avoid code duplication and to achieve a modular and extensible
design, ArmDroid extends the Application base class provided by the Android
framework and move all the common functionality to ArmDroidApplication.�
/* ArmDroidApplication . java */

public class ArmDroidApplication extends Application
implements OnSharedPreferenceChangeListener {

// app - level parameters
SharedPreferences preferences ;
InetAddress simServAddr ; // server URL
Integer simServPort ; // listen port

...

public void onSharedPreferenceChanged
(SharedPreferences sharedPreferences , String key) {
...

}

}� �
Common settings include the remote server configuration parameters (URL

and listen port). An example of data structure that is common to the two
activities is the SharedPreferences object. Another example is described in
the next subsection.

8

3.3 Periodic actuation jobs
In both the activies, the system configuration is periodically sampled, eventually
filtered, and finally sent to the remote server node via UDP. The system con-
figuration for the TeachPendantActivity is the robot arm joint set, whereas
the device’s orientation and the generated twist5 of motion are the system
configuration for the MobilePlatformDriveActivity. But this is not the only
difference in how the UDP packets are generated by the two activities. In fact,
packets must also include an identification string to specify to the server whether
the received motion specification is for the robot arm or the mobile base. This
suggests the use of an abstract class defining the behaviour of a “base” actuation
job, whose concrete implementations, one per activity, differ in the way they
construct the message for the server. With reference to figure 6, the following
code is implemented in ArmDroid.�
/* ArmDroidApplication . java */
...
public abstract class BaseJob extends TimerTask {

protected String msg;
public Handler handler = new Handler ();

public abstract void buildMessage ();

public void run () {

handler .post(new Runnable () {
public void run () {

buildMessage (); // construct msg
DatagramSocket simServSock = new DatagramSocket ();
...
DatagramPacket simServPack = new DatagramPacket (...) ; // msg
simServSock .send(simServPack);

}
});

}

}

/* TeachPendantActivity . java */
...
public class ArmActuationJob extends BaseJob {

...

public void buildMessage () {
msg = Arrays . toString (armDroidApp . tpStruct . getStatus ()) +

", " + armDroidApp . tpStruct . angleUnits + ", arm";
}

}

/* MobilePlatformDriveActivity . java */
...
public class MobilePlatformActuationJob extends BaseJob {

...

public void buildMessage () {
if (activityMode == ActivityMode . DRIVING)

msg = Arrays . toString (armDroidApp . mpDriveStruct . generateTwist ())
+ ", mp";

}

}� �
5http://en.wikipedia.org/wiki/Screw_theory#Twist

9

Figure 6: Simplified UML representation of the data structure implementing
actuation jobs in ArmDroid.

Actuation jobs extend TimerTask, a class provided by the Android framework
to represent a task to be run at a specified time, once or repeatedly. To preserve
system resources, ArmDroid combines the actuation job timer tasks with a
CountDownTimer that keeps track of how much time has passed since the last
user/activity interaction and that cancels the timer task if no interaction has
occurred within the last 5 seconds. Cancelled timer tasks are re-created and
restarted by fireUpAnActuationJob, each time a method that changes the
system configuration is executed.

3.4 Database
The TeachPendantActivity provides functionalities that allow users to save,
load and delete joint configurations in/from a local database.

Until now, important Android building blocks such as services and broadcast
receivers have not been used for developing the app. In fact, Android services
are used for processes that should run independently of activities, which may
come and go. But since ArmDroid does not comply to this logic in any of its
functionalities, it has been considered a good practice to not use services (and
broadcast receivers) in this context. On the other hand, to use as much Android
building blocks as possible was a goal of the project, thus database functionalities
have been implemented by using services and broadcast receiver, even if this
may appear a bit overused in this case.

Each service creates an AsyncTask to perform all the database operations
(create, read and delete) in a thread different from the UI thread. These opera-
tions are all handled by the TeachPendantDataBaseHandler class that extends
SQLiteOpenHelper. It operates on TeachPendantJointConfiguration objects
that encapsulate the information about the robot arm joint set configurations
and implement the class Parcelable, so as to allow data serialization and favour
a clever design.

The following code shows (portions of) the joint set configuration importer

10

as implemented in ArmDroid.�
/* TeachPendantActivity . java */
...

protected void onResume () {

super . onResume ();

...

// register receiver for db queries
IntentFilter serviceActiveFilter = new IntentFilter (

QUERY_COMPLETED_BROADCAST);
this. serviceReceiver = new BroadcastReceiver () {

public void onReceive (final Context context , Intent intent) {
// receive a configuration object (Parcelable)
TeachPendantJointConfiguration jc = (

TeachPendantJointConfiguration)
intent . getParcelableExtra (" jointSetConfiguration ");

armDroidApp . tpStruct . setStatus (jc. getStatus ());
fireUpAnActuationJob ();
writeEditTexts (jc. getStatus ());

}
};
this. registerReceiver (this. serviceReceiver , serviceActiveFilter);

}

protected void onPause () {

super . onPause ();

...

// unregister receiver
if (this. serviceReceiver != null) {

unregisterReceiver (this. serviceReceiver);
this. serviceReceiver = null;

}

}

public void importJointSet (View v) {

AlertDialog . Builder builder = new AlertDialog . Builder (this);
...
. setPositiveButton (" Import ", new DialogInterface . OnClickListener () {

public void onClick (DialogInterface dialog , int id) {
String jointSetName = jointSetEditText . getText (). toString ();
Intent buttonIntent =

new Intent (TeachPendantActivity .this ,
TeachPendantDataBaseHandlerQueryService . class);

buttonIntent . putExtra (" jointSetName ", jointSetName);
TeachPendantActivity .this. startService (buttonIntent); //

query
}

}).show ();

}

/* TeachPendantDataBaseHandlerQueryService */
...

public class TeachPendantDataBaseHandlerQueryService extends Service {

TeachPendantDataBaseHandler dbHandler ;

...

public void onStart (Intent intent , int startId) {
// get the name of desired joint set
String jointSetName = intent . getStringExtra (" jointSetName ");
// start the actual query task (AsyncTask)

11

this.new ReaderTask (jointSetName). execute ();
}

private class ReaderTask
extends AsyncTask <Void , Void , TeachPendantJointConfiguration > {

...

protected TeachPendantJointConfiguration doInBackground (Void ... arg0)
{

// performs the query on dbHandler
// SQLiteDatabase db = this . getReadableDatabase ();
// cursor = db. query (...)
// <save the TeachPendantJointConfiguration >
// cursor . close ();
// db. close ();
// <return the TeachPendantJointConfiguration >
return dbHandler . getJointConfiguration (jointSetName);

}

protected void onPostExecute (TeachPendantJointConfiguration jc) {
if (jc == null)

... // not found
// call the private method that sends broadcast :
// Intent intent = new Intent ();
// intent . setAction (QUERY_COMPLETED_BROADCAST);
// intent . putExtra (" jointSetConfiguration ", jointConfig);
// this . sendBroadcast (intent);
sendQueryServiceCompletedBroadcast (jc);

}

}

}� �
4 Conclusions
This document described ArmDroid, an Android application that allows to
teleoperate the KUKA youBot mobile manipulation platform. Developed as
final project for the course “Android Framework” taught at Scuola Superiore
Sant’Anna, ArmDroid is designed so as to provide a simple interface and concrete
(even if basic) teleoperation functionalities.

In spite of its simplicity, the underlying idea is interesting considering the
increasing adoption of Android devices worldwide.

As a future work, a specific activity should be implemented that allows the
robot gripper (tool or hand) to be teleoperated, at the same way that the robot
arm and the mobile base are today. In this way, the robot will be able to interact
with the surrounding environment and perform complex tasks.

Furthermore, it should also integrate some form of visual feedback of the
robot point-of-view, e.g., from sensors such as Microsoft Kinect. In this way,
it would result a great tool used by human operators for helping autonomous
robots accomplish demanding tasks in the real-world.

12

References
[1] KUKA youBot Store. Available: http://youbot-store.com/, 2011.

[2] The Gazebo Simulator. Available: http://gazebosim.org/, 2011.

[3] Android Framework, Scuola Superiore Sant’Anna. Available: http://retis.
sssup.it/~panizzo/android/, 2012.

[4] ROS- Robot Operating System. Available: http://ros.org/, 2012.

[5] Locomotec. KUKA youBot User Manual. Available: http://youbot-store.
com/downloads/KUKA-youBot_UserManual_v0.83.pdf. Technical report,
November 2011.

13

